

For more information: http://www.packtpub.com/UML/book

UML 2.0 in Action
A Project-Based Tutorial

Patrick Grässle
Henriette Baumann
Philippe Baumann

Chapter 2 "Basic Principles and Background"

http://www.packtpub.com/uml/book

In this package, you will find:
• A biography of the authors of the book

• A preview chapter from the book, Chapter 2 "Basic Principles and
Background"

• A synopsis of the book’s content

• Information on where to buy this book

About the Authors

Patrick Grässle is the co-founder and board member of KnowGravity Inc.
(www.knowgravity.com) in Zürich, a leading supplier of MDA and Business Rules
know-how. Patrick studied Informatics and Economics at the University of Zürich. In
1986, he built his first model of an IT system using structured analysis and has not stopped
modelling since then. He has applied UML in many projects. He used and consulted
structured and object-oriented methods for system specification. In the nineties, he helped
develop the first localized UML trainings in Switzerland.

The UML-based 'Model Driven Architecture' and the 'Business Rules Approach' absorb
his main interest nowadays, but he is still doing UML training and consulting. Patrick can
be reached at patrick.graessle@knowgravity.com.

Henriette Baumann is the co-founder and board member of integratio GmbH
(www.integratio.com), based in Zurich. Henriette studied Informatics and Economics
and was involved in software development and engineering since the mid-eighties,
particularly with the transformation of business requirements in software systems. In
1998, she started with UML business modeling and has used UML in several projects.
Today her main focus is on project management and consulting for business analysis,
business requirements engineering, and business specifications based on UML, especially
for financial service companies.

Henriette can be reached at henriette.baumann@integratio.com.

Philippe Baumann is co-founder and member of the board of integratio GmbH
(www.integratio.com), based in Zurich.

Philippe studied Informatics at the University of Hagen (D) and was involved in
software development and application integration since the mid-eighties. In 1998, he
started with UML, and its usage in system integration and electronic data interchange
between companies.

Today he is the project manager and consultant for technical aspects and implementation
of software integration using UML. He is also active in the field of implementation and
integration of Open Source business software such as ERP and CRM.

Philippe can be reached at philippe.baumann@integratio.com.

 UML 2.0 in Action: A Project-Based Tutorial, by Packt Publishing 5

2
Basic Principles and

Background

Much of what will be explained in the next few chapters is based on a few fundamental
concepts. These have been summarized in this chapter.

2.1 Introduction to the Case Study
For our case study we have chosen an airport—the UML Airport. Anyone who has ever
been on a flight will have no problems understanding our example.

We will restrict our example to those areas of the airport that passengers are in contact
with during departure, meaning we will take a closer look at passenger check-in and
boarding. Figure 2.1 illustrates how passenger services can be distinguished from other
areas of the airport. It shows the various stages that passengers go through until they are
seated in the airplane, buckled up, and the plane is ready to take off. Not all stages
passengers go through are related to passenger services. The stages that belong to
passenger services are framed and printed in italic font.

A sequence of steps like this is called a scenario. However, the depicted scenario is only
one of many possible scenarios. The following exceptions are possible for passenger
check-in and boarding:

• The passenger only has carry-on luggage.

• The passenger doesn't buy anything at the newsstand.

• The passenger is running late and now has to check in as quickly as possible.

• The passenger loses his or her boarding pass.

• The passenger arrived by plane and merely has to change planes, meaning
that he or she doesn't leave the transit area.

• The passenger checks in, but falls asleep on an uncomfortable chair in the
waiting area, and misses the departure of his or her flight, despite being
called repeatedly.

• The passenger doesn't get through passport inspection because his or her
passport has expired.

Figure 2.1 Case Study: "Passenger takes plane to go on vacation"

6 UML 2.0 in Action: A Project-Based Tutorial, by Packt Publishing

 UML 2.0 in Action: A Project-Based Tutorial, by Packt Publishing 7

Think about which of the above-mentioned scenarios are relevant for passenger
departure and whether there are more relevant scenarios than those mentioned.

Figure 2.2 Schematic illustration of the UML Airport

The schematic illustration of the UML Airport in Figure 2.2 should help you to
understand the events of the case study better. Many areas around the main passenger
services are related in one or more ways to passenger services. Some examples are:

• Ticket sales

• Newsstand

• Duty-free shop

• Passport inspection/immigration

• Flight control

• Information desk

• Baggage check-in and transportation

8 UML 2.0 in Action: A Project-Based Tutorial, by Packt Publishing

Passenger services have to exchange data with some of these areas. They also have to
communicate with other areas of the airport. We will introduce those areas when we
discuss business models and models of system integration. Therefore, the case study will
be expanded further in the following chapters.

UML Airport is a small airport and the case study has been purposely kept simple.
Anyone who has ever been on a flight should be able to understand the examples.

The purpose of the case study is to provide a coherent example throughout the chapters of
this book. A few details of the case study require further explanation:

• The plane ticket consists of the actual ticket and up to four additional
sections. The ticket is the little booklet that has a separate coupon for every
part of the trip. For example, a ticket could contain a coupon for the flight
from Zurich to Frankfurt, one for the flight from Frankfurt to London, and
one for the return flight from London to Zurich. Each time at check-in the
appropriate coupon will be exchanged for a boarding pass. The ticket always
stays with the passenger.

• We distinguish between a flight and a flight number. For instance, a flight
number could be LH435 or LX016. It stands for a regular flight that occurs
at a certain time from the departure airport to the destination airport. A flight,
on the other hand, would be, for example, LH435 on 26th August, 2000. It is,
so to speak, an execution of a flight number. A flight could be canceled due
to bad weather. A flight number is used as long as the airline offers a certain
flight regularly.

• We differentiate between three options for check-in:
o Normal check-in with luggage at a normal check-in counter
o Express check-in without luggage at a special check-in counter

Automated check-in without luggage at a machine

2.2 Models, Views, and Diagrams

2.2.1 What is a Model?
Models are often built in the context of business and IT systems in order to better
understand existing or future systems. However, a model never fully corresponds to
reality. Modeling always means emphasizing and omitting: emphasizing essential
details and omitting irrelevant ones. But what is essential and what is irrelevant? There is
no universal answer to this question. Rather, the answer depends on what the goals of the
model are and who is viewing or reading it.

 UML 2.0 in Action: A Project-Based Tutorial, by Packt Publishing 9

Think about what is emphasized or omitted in the following models:

• A wind tunnel model of a car

• A model of a building scaled at 1:50

• A route plan of the subway

• A map

• An organization chart

The more information a model is supposed to give, the more complex and difficult it
becomes. A map of Europe, for example, that simultaneously contains political,
geological, demographic, and transportation-related information is hardly legible. The
solution to this problem is to convey the different types of information on individual
maps. Different views are formed of the objects under consideration. These views are
interconnected in many ways. Generally, if one view is changed, all other views have to
be adjusted as well. If, for instance, in the Netherlands new land is reclaimed from the
North Sea, all views—meaning all maps—have to be updated.

Figure 2.3 Different views of an object

The same is true for the model of a building. If a new wing is added to an existing
building various views are affected, including the floor plan, the different exterior views,
and the 3D-model made from wood. Figure 2.3 illustrates this in a schematic manner. In
Section 2.4, The Models of our Case Study, we specifically address the relationships
between the models we use in this book. The different views within each model are

10 UML 2.0 in Action: A Project-Based Tutorial, by Packt Publishing

described in more detail in Chapter 3, Modeling Business Systems; Chapter 4, Modeling
IT Systems; and Chapter 5, Modeling for System Integration.

2.2.2 Why do we Need Models?
As a general rule, a model of a system has to perform the following tasks:

• Communication between all involved parties: In order to build the right
system, it is essential that all involved parties think along the same lines. It is
particularly important that everyone understands the terminology used, that
customers agree upon the same requirements, that developers understand
these requirements, and that the decisions made can still be understood
months later.

• Visualization of all facts for customers, experts, and users: All accumulated
facts relevant to the system need to be presented in such a way that everyone
concerned can understand them. However, according to our real-life
experience, we often hit a wall of resistance when we want to communicate
with diagrams instead of text. It is necessary to overcome this resistance.
Behind it is often a fear of the unknown; and the diagrams might look a bit
complicated at first. Therefore, this book contains directions on how to read
each diagram.

• Verification of facts in terms of completeness, consistency, and correctness:
A (more or less) formal model makes it possible to verify the facts obtained
for completeness, consistency, and correctness. In particular, the clear
depiction of interrelationships makes it possible to ask specific questions, and
to answer them. We will list these questions with each diagram.

Answer the following questions for yourself:

• When was the last time you felt that you were at cross-purposes when you
discussed a system?

• When was the last time you felt that you were discussing the same issue over
and over again?

• When was the last time you wished that the consensus you reached during a
discussion had been recorded?

 UML 2.0 in Action: A Project-Based Tutorial, by Packt Publishing 11

2.2.3 Purpose and Target Group of a Model
In real life we often observe that the results of cumbersome, tedious, and expensive
modeling simply disappear in a stack of paper on someone's desk. We might ask why
this is so. Two factors greatly influence the result of modeling: for whom do we create
the model and for what purpose is it supposed to be used. If we don't discuss and define
these aspects sufficiently, we run the risk of creating models that don't contain what is
important to the user. In other words, if details are not emphasized and omitted
appropriately, the model is rendered worthless.

To define the purpose and target group the following questions should be answered:

• How much business expertise can we expect? Can we assume basic
knowledge of the subject, or do we have to explain the fundamentals of the
model's events and processes?

• What amount of detail does the target group need? What level of complexity
does the model permit? If processes and systems are subject to constant
changes, a highly detailed model might be unrealistic. This is because, most
of the time, it is not possible to maintain those models in a satisfactory
manner. A less detailed model requires less effort to develop and update, but
it is also less precise.

• How much time does the target group have to read and interpret the model?
Prevent your model from disappearing in a stack of paper on someone's desk
by choosing the appropriate level of detail and complexity; otherwise,
nobody might have enough time to read it.

• What language can be used in the model? Does the target group understand
technical business terms? Do they understand IT terminology?
Let's clarify with an easy example: If a bottle filled with water is labeled
'water', virtually anyone who can read will understand the bottle's content.
However, if the bottle is labeled 'H2O'—even though this is correct—we
reach a much smaller group of people, for example, the workers of a
chemistry lab. Yet, the additional benefit is that it shows the composition of
the content: hydrogen and oxygen. In either case, you will have to decide
what 'label' is most appropriate for your target group.

• What level of abstraction should you choose? The less abstract a model, the
more comprehensible, and clear it is for the user. This is because a less
abstract model is closer to the user's actual use and language. On the other
hand, models with a high level of abstraction are more reusable and they are
more easily converted into IT systems. We can also prove more accurately
that they are correct. IT specialists probably manage highly abstract models
best. Users, on the other hand, might pull their hair out if asked to deal with a
model like that.

Practical Tips
Compromises have to be made between the level of abstraction, clarity, and the amount
of detail used for a model. It is possible to develop several model components, differing
in degree of formality and detail, in order to satisfy different target groups. In this way
communication between model builders, customers, users, and developers can be
facilitated much more easily. It is important not to 'overdo' it, but to adjust the model to
its target groups and their uses.

Analysis or design patterns are example models that describe common design and
modeling methods. You should, whenever possible, look for these example models: on
the Internet, in books (for example, Martin Fowler: Analysis Patterns: Reusable Object
Models, Addison-Wesley, 1999), in magazines, or ask your coworkers.

2.2.4 Process of Analysis
obtaining

12 UML 2.0 in Action: A Project-Based Tutorial, by Packt Publishing

Figure 2.4 shows the process of analysis, which consists of , representing, and
verifying facts:

Figure 2.4 Process of Analysis

This is the job of the analyst. The process of analysis produces a specification that comes
from the model and other representations. The analyst works with knowledge carriers,
such as customers, users, and domain experts:

• Facts are obtained by collaboration between analysts and domain experts in
which knowledge carriers contribute domain knowledge and analysts
contribute methodological knowledge.

• Facts are represented in diagrams and documents, which are usually
prepared by the analyst.

 UML 2.0 in Action: A Project-Based Tutorial, by Packt Publishing 13

• Facts are verified only by knowledge carriers, since they alone can decide if
the presented facts are correct. Verification is absolutely essential. Without it
we might have pretty diagrams, but the probability is high that the facts
represented are faulty. In simple terms: development of a model without
verification is absolutely worthless!

Practical Tips
It is impossible to develop and verify a usable model without mastering the technical
foundations of a topic. Where do we find these knowledge carriers who know
something about the systems that we want to model? We have had good experiences with
the following groups of people:

• People who are involved in performing, operating, and controlling
business processes

• Users of similar or related IT systems

• Customers, who are often critical and creative knowledge carriers

• Business Partners

• Domain Experts

• Management

• External Observers

Several helpful techniques have proven to be useful for the analysis and understanding of
business processes:

• Observing employees at work

• Participating in the investigated business processes

• Taking the role of an outsider (e.g. of a customer)

• Carrying out surveys

• Conducting interviews

• Brainstorming with everyone involved

• Discussing with domain experts

• Reviewing existing forms, documentation, specifications, handbooks,
and work tools

• Describing the organizational structure and workflow management
(organization charts, etc.)

2.2.5 Diagrams as Views
Each particular UML diagram corresponds to one view of a model of a system.
Depending on the type of diagram used, different aspects are either emphasized or
omitted. All the different views combined result in a good model of a system. Most of the
UML diagrams are graphs (as shown in Figure 2.5), implying that they consist of
elements that are connected through lines:

Figure 2.5 Diagram as graphs

In order to read diagrams, you have to know what types of elements and lines are allowed
and what they mean. We will explain this for the diagrams we use throughout the
following chapters.

14 UML 2.0 in Action: A Project-Based Tutorial, by Packt Publishing

Even computer aided software engineering- (CASE) tools treat UML diagrams as
views. They use a database in which the information about the model is stored. Each
diagram shows—as a view—a part of that information. In this way, the CASE tool helps
to preserve the consistency of each view. If, for example, the name of a class is changed
in a class diagram, the statechart diagram of that class is automatically updated:

Figure 2.6 CASE tool as database

The model database is what fundamentally differentiates a CASE tool from a graphical
program (Figure 2.6). Any UML diagram can be generated easily with paper and pencil

 UML 2.0 in Action: A Project-Based Tutorial, by Packt Publishing 15

or a graphical program. In this case, however, the various diagrams are nothing more than
drawings. Only the use of a CASE tool with a database, according to UML specifications,
permits consistent collection, management, and modification of model information. UML
provides its own database model: the UML meta-model, a component of the UML
specifications ("OMG: Unified Modeling Language: Infrastructure, Version 2.0, Final
Adopted Specification, September 2003, and OMG: Unified Modeling Language:
Superstructure, Version 2.0, Revised Final Adopted Specification, October 2004":
http://www.omg.org). All elements found in UML diagrams, as well as the descriptions
of these elements, are contained in the UML meta-model. It states, for example, that a
class can have attributes and methods. This "data model" of UML as a language, is the
foundation of the model databases of all UML CASE tools. Unfortunately, many CASE
tools are hungry for resources, expensive, poorly developed, cumbersome, and require
extensive training. Despite this, except for very small projects, their use is worthwhile.

2.3 Information Systems and IT Systems
In almost all occupations, part of the job is dealing with information. It has been this way
for thousands of years and is one of the reasons behind the development of writing. Some
of the oldest texts found in Europe include, for instance, stock lists from the palace of
Knossos in Crete. If we were able to watch the stock managers work as they did 3,500
years ago, we could probably map the business processes that people followed back then.
We could see that these people were dealing with suppliers and buyers, that they were
exchanging goods, and that they kept written records of their business activities. The
same was true for a Roman olive merchant 1,500 years later, for a Hanseatic merchant's
trading office in fifteenth century Northern Germany, or at Lloyd's of London at the
beginning of the last century.

In the above examples, more or less complex information systems were used to handle
daily tasks. The purpose of these information systems was, and is, to manage the
information needed to operate a business. Of course, all of this took place without
computers. Information systems were supported by other techniques such as chalkboards,
large filing systems, and index cards. Today, computers allow us to implement
information systems as IT systems. This creates new possibilities that would probably be
unthinkable for the Roman olive merchant. But basically, the point is still to provide and
to process data that is needed for dealing with everyday business processes. We will
generally be talking about IT systems in this book, since we assume that information
systems modeled with UML are implemented by IT technology.

In our case study—passenger services at UML Airport—employees at the check-in deal
with passengers, plane tickets, and flights that are real. On the other hand, there is a
representation or image of these passengers, plane tickets, and flights in the information
system. These images consist of information about the passengers, tickets, and flights
stored in the information system, needed for operating processes, as shown in Figure 2.7:

Figure 2.7 Objects from the real world and their images

IT systemAn is a computer-based system—a system that provides information needed
for the execution of certain business processes, generally in response to a query by a user.
Of course the IT system has to be 'fed' with information, so that it can answer queries.

Figure 2.8 shows the cooperation between business systems and IT systems
schematically. Within the framework of the business processes of a business system,
information is retrieved from and stored in IT systems:

Figure 2.8 IT System

The modeling techniques introduced in this book not only hold true for the development
of IT systems, but they can also be used whenever an information system needs to be
analyzed. To illustrate this, we invented a second example—in addition to our case study
on passenger services at UML Airport—which we will come back to in different places
of this book.

16 UML 2.0 in Action: A Project-Based Tutorial, by Packt Publishing

The second example is a medieval Hanseatic merchant's trading office owned by a Mr.
Hafenstein. (The Hanseatic League was a powerful alliance of merchant guilds in cities
of Northern Germany and the Baltic that controlled trade in this region during the middle

ages.) The supervisor of the office is the faithful and diligent secretary Hildebrandt. The
office keeps several books, namely a daybook, a sales ledger, and a customer index. Each
book is the responsibility of a different clerk. Nobody besides the clerk responsible is
allowed to make any changes in a book, and only he knows exactly where in the book a
particular piece of information is recorded.

In our terminology, the office, including Hildebrandt, the clerks, and the books, make up
the information system. With the help of this example we want to show in different
places in this book that, even though an information system can be implemented as an IT
system with the help of computer technology, conceptually it has nothing to do with
computers. Instead, it can be realized in many ways.

2.4 The Models of our Case Study
In our case study we construct three models of different systems:

1. The model of the business system describes passenger services, meaning the
business surroundings of the IT system. It deals with business processes,
passengers, business partners, employees, etc. We discuss this model in
Chapter 3, Modeling Business Systems.

2. The model of the IT system explains the IT system that was built for
passenger services. The model of the passenger service business system
serves as the foundation for the model of the IT system. We discuss this
model in Chapter 4, Modeling IT Systems.

3. The model of system integration describes integration into the environment,
especially gateways to the outside world. Here also, the model of the
passenger service business system serves as the foundation. This model is
discussed in Chapter 5, Modeling for System Integration:

Figure 2.9 Models of the case study

 UML 2.0 in Action: A Project-Based Tutorial, by Packt Publishing 17

18 UML 2.0 in Action: A Project-Based Tutorial, by Packt Publishing

All three models are needed to build and integrate IT systems; the model of the IT system
alone is insufficient. This is true not only for our case study, but also for all other cases.

You can see in Figure 2.9 that the model of the business system provides the foundation
for all other models. In this way, it constitutes the basis to work from for everyone
involved in the project. Because of this, it is of great advantage to use a unified modeling
language, which can be understood by people from the different departments as well as
from information technology. This enables a smooth exchange of models between the
various areas. It also significantly eases verification of the models. We are convinced that
UML functions as a link that has the ability to close the existing gap between the
technical requirements and the actual performance characteristics of IT systems.

2.5 History of UML: Methods and Notations
In its short history, information technology has already produced a plethora of methods
and notations. We have methods and notations for design, structure, processing, and
storage of information. We also have methods for the planning, modeling,
implementation, assembly, testing, documentation, adjustment, etc. of systems. Some of
the concepts used are relatively fundamental, and because of that, they can also be found
beyond the field of information technology. One example of that is inheritance, which is
present in nature, but is also a cornerstone of object-oriented programming.

Until about the 1970s, software developers viewed the development of software as an
artistic venture. But because systems became more and more complex, software
development and maintenance could no longer be conquered with this creative-individual
approach. Eventually, this approach led to the software crisis.

This crisis leads to the engineering approach (software engineering) and structured
programming. Methods were developed for the structuring of systems and for the
processes of design, development, and maintenance. Process-oriented approaches, for
example the Hierarchy Input Processing Output (HIPO) method, emphasized the
functionality of systems. With this method the total system is divided into smaller
components through functional decomposition.

Figure 2.10 gives a visual overview (hierarchical diagram) of the sub-functions in the
invoice example. An input-process-output schema describes every functional element.

At the same time, data-structure oriented approaches were developed, such as the
Jackson method, in which the program structure is derived from the graphical display of
data structures.

Figure 2.11 shows, in the left-hand column, the structure of an inventory data set. The
right-hand column shows the program structure that was derived from the data structure:

Figure 2.10 HIPO Diagram

Figure 2.11 Jackson Diagram

 UML 2.0 in Action: A Project-Based Tutorial, by Packt Publishing 19

20 UML 2.0 in Action: A Project-Based Tutorial, by Packt Publishing

In all these methods and notations, we split the system into two portions—a data section
and a procedure section. This is clearly recognizable in older programming languages
such as COBOL. Data flow-charts, structure charts, HIPO diagrams, and Jackson
diagrams are used to illustrate the range of functions. Naturally, these early methods
emphasized the development of new systems.

In the 1980s, classical structural analysis was developed further. Developers generated
entity relationship diagrams for data modeling and Petri nets for process modeling.

As systems became more complex, no longer could every system be designed "from
scratch". Properties, such as maintainability and re-usability, became more and more
important. Object-oriented programming languages were developed, and with them, the
first object-oriented modeling languages emerged in the 1970s and 1980s. In the 1990s,
the first publications on object-oriented analysis and object-oriented design became
available to the public. In the mid-1990s, already more than 50 object-oriented
methods existed, as well as just as many design formats. A unified modeling language
seemed indispensable.

At the beginning of the 1990s, the object-oriented methods of Grady Booch and James
Rumbaugh were widely used. In October 1994, the Rational Software Corporation (part
of IBM since February 2003) began the creation of a unified modeling language. First,
they agreed upon a standardization of notation (language), since this seemed less
elaborate than the standardization of methods. In doing so, they integrated the Booch
Method of Grady Booch, the Object Modeling Technique (OMT) by James
Rumbaugh, and Object-Oriented Software Engineering (OOSE), by Ivar Jacobsen,
with elements of other methods and published this new notation under the name UML,
version 0.9. The goal was not to formulate a completely new notation, but to adapt, to
expand, and to simplify the existing and accepted types of diagrams of several object-
oriented methods, such as class diagrams, Jacobson's Use Case Diagrams, or Harel's
Statechart Diagrams. The means of representation that were used in structured methods
were applied to UML. Thus, UML's activity diagrams are, for example, influenced by the
make-up of data flow charts and Petri nets.

What is outstanding and new in UML is not its content, but its standardization to a single
unified language with formally defined meaning.

Well-known companies, such as IBM, Oracle, Microsoft, Digital, Hewlett-Packard, and
Unisys were included in the further development of UML. In 1997, UML version 1.1 was
submitted to and approved by the OMG. UML version 1.2, with editorial adaptations,
was released in 1998, followed by version 1.3 a year later, and UML 1.5 in March, 2003.
Developers had already been working on version 2.0 of UML since the year 2000, and it
was approved as a Final Adopted Specification by OMG in June, 2003. When this book
went to print in June, 2005 the final stage of adoption by OMG as an Available
Specification was not yet completed.

 UML 2.0 in Action: A Project-Based Tutorial, by Packt Publishing 21

2.6 Requirement Specification
Models of the system to be developed make up an integral part of every requirement
specification. This book provides a substantiated basis for the development of these
models. Unfortunately, there is no universal recipe for the specification of requirements.
Rather, the choice and level of detail of models depend on various factors. Our
experience shows that the following three points are most important:

• Who is specifying?
• For whom is it being specified?
• What is being specified?

2.6.1 Guidance for Decision Making
The models and views that are provided by this book are basically the building blocks
from which you can choose the required models for a requirement specification. The
following table will support you in making the proper choice of models and views:

Model
(What)

View Originator
(Who)

Target
Audience
(for Whom)

Purpose
(for What)

Business
System

External View User Agent User Agent Business
Documentation

 IT Agent Basis for IT
System
Specification

 Internal View User Agent User Agent Business
Documentation,
Description of
Procedures

 IT Agent Basis for IT
System
Specification

IT System External View User Agent IT Agent
User Agent

Requirements
of an IT System

 Structural View IT Agent IT Agent IT System
Specification

 Performance
View

User Agent
IT Agent

IT Agent IT System
Specification

 Interaction
View

User Agent
IT Agent

IT Agent IT System
Specification

22 UML 2.0 in Action: A Project-Based Tutorial, by Packt Publishing

Model
(What)

View Originator
(Who)

Target
Audience
(for Whom)

Purpose
(for What)

System
Integration

Process View User Agent IT Agent IT System
Integration
Specification

 Static View IT Agent IT Agent IT System
Integration
Specification

2.6.2 Verification
All the views introduced in this book describe a model that documents the requirements
from the viewpoint of the user. This means that all utilized models and views:

• Can only be created in cooperation with user agents

• Can only be verified by user agents with respect to correctness of content

Even though we develop the model of the IT system for the target audience, the IT
agents, we cannot do so without user agents, who have to provide the requirements and
verify the model. They represent the user's point of view and are knowledge carriers of
the user domain.

Since various groups are involved in the development and verification of requirement
specifications, it is especially important to use a unified modeling language, in order to
prevent misunderstanding though misinterpretation.

2.7 UML 2.0

2.7.1 Overview of UML 2.0
UML 2.0 in Action: A Project-Based Tutorial is based on the new version of UML—
UML 2.0. In this version, the structure and documentation of UML was completely
revised. There are now two documents available that describe UML:

• UML 2.0 Infrastructure defines the basic constructs of the language on which
UML is based. This section is not directly relevant to the users of UML (our
readers), but is directed more towards the developers of modeling tools.

• UML 2.0 Superstructure defines the user constructs of UML 2.0, meaning
those elements of UML that users work with at the immediate level.

Among other things, this revision of UML was created to pursue the following goals:

• To restructure and refine UML so that usability, implementation, and
adaptation are simplified.

• The UML infrastructure is supposed to:
o Provide a reusable meta-language core, with which UML can

define itself
Provide mechanisms for the adjustment of language

• The UML superstructure is supposed to:
o Feature better support for component-based development
o Improve constructs for the specification of architecture

Provide better options for the modeling of behavior
In addition to the proposal of UML Infrastructure and UML Superstructure
specifications, separate proposals were published for a new Object Constraint
Language (OCL) as well as for Diagram Interchange. Together, they make up the
complete UML 2.0 package, as shown in Figure 2.12:

Figure 2.12 The complete UML 2.0 package

UML 2.0, as a whole, is more extensive and more complex than earlier versions. The
extent of UML documentation has also further increased. While the documentation of
UML 1.5, including OCL, comprised about 730 pages, the documentation of UML 2.0,
also including OCL, contains approximately 1050 pages.

Even though part of the documentation doesn't concern the 'normal' UML user, for a
member of a software development project, reading the complete work is unrealistic.
This is not only due to the number of pages, but also because of the number and
complexity of UML constructs. Because of this, reduction to the UML constructs
necessary for everyday project work is even more necessary than with earlier versions.
 UML 2.0 in Action: A Project-Based Tutorial, by Packt Publishing 23

24 UML 2.0 in Action: A Project-Based Tutorial, by Packt Publishing

From this follow two conclusions for our book UML 2 0 in Action A Project-Based . :
Tutorial.

The concept of this book is to show a very simplified picture of UML. This is becoming
even more important with the increasing scope of UML, since the accessibility of UML
did not become any greater with version 2.0.

Fortunately, many of the new features of UML 2.0 have little or no influence at the level
of detail used in this book. Consequently, there are only a few changes compared to the
earlier German editions of UML 2 0 in Action . : A Project-Based Tutorial . The restricted
scope of our book ensures stability towards the changes in new UML versions.

We consciously only show the tip of the iceberg, while the part hidden under water
becomes bigger and bigger. More than ever, we are of the opinion that the tip of the
iceberg (as shown in Figure 2.13) is sufficient for our target audience—members of IT
project teams—to understand UML enough to use it meaningfully in projects:

Figure 2.13 The UML iceberg

We would also like to point out a new possibility that UML 2.0 opens up. One of the
goals of UML 2.0 was the definition of formal and completely defined semantics. If this
new possibility is utilized for the development of models, corresponding systems can be
generated from these models. This yields the following advantages:

• A model that was described with UML reflects the real system.

• It is possible to correct mistakes in the model early and continuously.

• Intermediate steps such as amending code outside of the model design
are omitted.

• It is possible to make the same model executable on different platforms
(hardware as well as software).

However, a price has to be paid for these advantages. It becomes necessary to acquire a
deep and accurate understanding of UML and considerable effort has to be invested in the
development of the models.

 UML 2.0 in Action: A Project-Based Tutorial, by Packt Publishing 25

2.7.2 Effects on the Business System Model
Some changes made in performance modeling enhanced the possibilities for modeling
business systems. First, we'll give examples of several of the changes and improvements.

Activity diagrams are no longer special cases of the statechart diagram. Initially, this fact
was not relevant for the normal UML user. However, in addition to the new autonomy in
the meta-model, several other changes and improvements were made:

Until now, the separate steps in the activity diagram were referred to as activities. Now
the entire diagram is called an activity, whereas the steps previously called activities are
now referred to as actions. An action can call a primary operation as well as another
activity. This enables flexible modulation in the top-down view of models.

A division does not necessarily have to be re-synchronized.

An activity can have more than one initial state. With this, several events can be started at
the same time.

Input and output parameters can be added to an activity.

One of the improvements made in the sequence diagram is the addition of so-called
operators. These operators make it possible to package several actions/activities within a
sequence diagram. For instance, operators can be used to refer to other sequence
diagrams or individual sequences. Appropriate operators can also represent iterations.
With the newly introduced operators, sequence diagrams now support a top-down view.

OCL is now an inherent part of UML. It can be used to describe agreements, invariants,
preconditions, and post conditions within UML models, which enables more precise
modeling of business systems and business processes.

2.7.3 Effects on the IT System Model
The diagrams that we have used in this book in the different views of the IT system did
not undergo any significant changes.

The biggest change occurred in the notation of the sequence diagram. Here, among
other things, the interaction reference is available as a construct for modularization.
However, nothing changed concerning the meaning and functionality of sequence
diagrams at the level of detail used in this book. The same holds true for the class
diagram and the case diagram.

Statechart diagrams underwent the most interesting changes for the modeling of IT
systems: connection points allow, for example, better modulation of statechart
diagrams. However, we decided not to use this language element in our simplified
approach to UML.

26 UML 2.0 in Action: A Project-Based Tutorial, by Packt Publishing

2.7.4 Effects on the Systems Integration Model
Of course, the improvements in behavioral modeling also had an effect on the process
view in the systems integration model. A significant improvement is the ability to add
input and output parameters to activities (see Section 2.7.2, Effects on the Business
System Model).

Hardly any changes were made in the area of static views, meaning the design of business
objects with class diagrams.

In addition to the changes that were made within the framework of UML 2.0, the UML
profile for Enterprise Application Integration (EAI) is of increasing importance in the
field of system integration. Besides the basic operations needed in the field of system
integration, it shows the data meta-models of various programming languages that are not
object-oriented. However, this occurs at a more detailed level, which has no influence
upon this text.

2.7.5 Conclusion
For the normal user, UML 2.0 does not turn the previous versions of UML upside down,
but represents an improvement on existing concepts. It is probably wise to use UML 2.0
for future models. On the other hand, it should be possible to continue using existing
constructs and models based on earlier UML versions. For ongoing projects the
advantages (more exact modeling) have to be weighed against the disadvantages
(additional work).

UML 2.0 in Action
A Project-Based Tutorial
The OMG Specification states:

"The Unified Modeling Language (UML) is a graphical language for
visualizing, specifying, constructing, and documenting the artifacts of a
software-intensive system."

Modeling is an essential part of large software projects, which also helps in the
development of medium and small projects. UML can be used to model a variety of
systems: software systems, business systems, or any other system. With its changes and
extensions, UML 2.0 now supports the modeling of business processes much better.

What This Book Covers
This book shows how, with UML, simple models of business processes and specification
models can be created and read with little effort. Most books deal with UML almost in its
entirety. However, often lack of time, previous knowledge, or motivation to deal with the
topic with the necessary intensity prevents us from understanding the material completely
and putting it into action. This book is meant for exactly these cases. It presents UML
only partially and in a simplified manner. We put together those parts of UML whose
application has proven to be practical.

Chapter 1 introduces us to UML and lists the advantages of using UML as a Modeling
Language. Chapter 2 introduces us to the case study. The purpose of choosing a case
study is to provide a coherent example through the chapters of this book. The chapter also
explains several basic terms and concepts like models, views, diagrams, information
systems, methods, and notations. The models and views provided by this book help
choose the most suitable model for a requirement specification.

Chapter 3 discusses the construction of business system models. It explains the benefits
of the different views in a business system and discusses the elements of each view. It
also provides instructions about how to construct use case diagrams.

Chapter 4 illustrates how a conceptual model of an IT system can be developed with the
help of UML. Chapter 5 describes the integration of the IT system into its environment.

It discusses how to model the messages that are exchanged between the various IT
systems, and the processes that are necessary to exchange these messages.

Where to buy this book
You can buy UML 2.0 in Action A Project-Based Tutorial direct from the Packt
Publishing website: http://www.packtpub.com/uml/book This book carries at
least a 10% discount on the website as well as free shipping to the US, UK, Europe,
Australia & New Zealand.

Alternatively, you can buy the book from Amazon, BN.com, Computer Manuals and
most internet book retailers.

www.PacktPub.com

http://www.packtpub.com/uml/book
http://www.packtpub.com/

	Chapter 2 "Basic Principles and Background"
	In this package, you will find:
	About the Authors
	Basic Principles and Background
	2.1 Introduction to the Case Study
	2.2 Models, Views, and Diagrams
	2.2.1 What is a Model?
	2.2.2 Why do we Need Models?
	2.2.3 Purpose and Target Group of a Model
	2.2.4 Process of Analysis
	2.2.5 Diagrams as Views

	2.3 Information Systems and IT Systems
	2.4 The Models of our Case Study
	2.5 History of UML: Methods and Notations
	2.6 Requirement Specification
	2.6.1 Guidance for Decision Making
	2.6.2 Verification

	2.7 UML 2.0
	2.7.1 Overview of UML 2.0
	2.7.2 Effects on the Business System Model
	2.7.3 Effects on the IT System Model
	2.7.4 Effects on the Systems Integration Model
	2.7.5 Conclusion

	What This Book Covers
	Where to buy this book

